Robust Estimators under the Imprecise Dirichlet Model
نویسنده
چکیده
Walley’s Imprecise Dirichlet Model (IDM) for categorical data overcomes several fundamental problems which other approaches to uncertainty suffer from. Yet, to be useful in practice, one needs efficient ways for computing the imprecise=robust sets or intervals. The main objective of this work is to derive exact, conservative, and approximate, robust and credible interval estimates under the IDM for a large class of statistical estimators, including the entropy and mutual information.
منابع مشابه
Practical Robust Estimators for the Imprecise Dirichlet Model
Walley’s Imprecise Dirichlet Model (IDM) for categorical i.i.d. data extends the classical Dirichlet model to a set of priors. It overcomes several fundamental problems which other approaches to uncertainty suffer from. Yet, to be useful in practice, one needs efficient ways for computing the imprecise=robust sets or intervals. The main objective of this work is to derive exact, conservative, a...
متن کاملRobust DEA under discrete uncertain data: a case study of Iranian electricity distribution companies
Crisp input and output data are fundamentally indispensable in traditional data envelopment analysis (DEA). However, the real-world problems often deal with imprecise or ambiguous data. In this paper, we propose a novel robust data envelopment model (RDEA) to investigate the efficiencies of decision-making units (DMU) when there are discrete uncertain input and output data. The method is based ...
متن کاملFuzzy decision making using the imprecise Dirichlet model
In most applications, probabilities of states of nature in decision making are not known exactly due to a lack of complete information. If the available information is represented by a small number of statistical data, Walley’s imprecise Dirichlet model may be regarded as a tool for determining interval probabilities of states of nature. It turns out that the resulting expected utilities consti...
متن کاملA Robust Dispersion Control Chart Based on M-estimate
Process control charts are proven techniques for improving quality. Specifying the control limits is the most important step in designing a control chart. The presence of outliers may extremely affect the estimates of parameters using classical methods. Robust estimators which are not affected by outliers or the small departures from the model assumptions are applied in this paper to specify th...
متن کاملLimits of Learning from Imperfect Observations under Prior Ignorance: the Case of the Imprecise Dirichlet Model
Consider a relaxed multinomial setup, in which there may be mistakes in observing the outcomes of the process—this is often the case in real applications. What can we say about the next outcome if we start learning about the process in conditions of prior ignorance? To answer this question we extend the imprecise Dirichlet model to the case of imperfect observations and we focus on posterior pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003